跳转到内容
主菜单
主菜单
移至侧栏
隐藏
导航
首页
最近更改
随机页面
MediaWiki帮助
GSXAB的知识库
搜索
搜索
外观
登录
个人工具
登录
Advertising:
查看“︁二面体群”︁的源代码
页面
讨论
简体中文
阅读
查看源代码
查看历史
工具
工具
移至侧栏
隐藏
操作
阅读
查看源代码
查看历史
刷新
常规
链入页面
相关更改
特殊页面
页面信息
外观
移至侧栏
隐藏
←
二面体群
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
[[分类:群论]] {{InfoBox |name=二面体群 |eng_name=dihedral group }} '''二面体群'''('''dihedral group''')指能使得一个[[正多边形]]与原图重合的,[[旋转]]及沿过中心的对称轴的[[轴对称]],关于其[[复合(映射)|复合]]所构成的群。 == 定义 == 对一个正 <math>n</math> 边形,共有 <math>2n</math> 种对称: * <math>n</math> 个不同的旋转对称,每个将图形旋转更多 <math>\frac{2\pi}{n}</math> ; * <math>n</math> 个不同的翻转对称,从经过中心和任意一个顶点的直线起,每隔 <math>\frac{\pi}{n}</math> 会有下一条对称轴。 这些变换的集合关于变换的复合构成一个群,称为'''二面体群'''('''dihedral group''')。对正 <math>n</math> 边形,这个二面体群称为 '''<math>2n</math> 阶二面体群'''('''dihedral group of order <math>2n</math>'''),记为 <math>D_{2n}</math> 。 也有人记作 <math>D_n</math> 或 <math>\mathrm{Dih}_n</math> 。 == 与对称群 == 二面体群可以看成顶点的重新[[排列]]([[置换]]),但是部分置换不对应原图形,因此可以看作一个[[置换群]]。 == 举例 == * 2 阶二面体群 <math>D_2</math> 只有正反两个方向的翻转,是[[二阶群|二阶循环群]] <math>C_2</math>。 * 4 阶二面体群 <math>D_4</math> 同构于 [[Klein 四元群]] <math>K_4</math> 。 * 6 阶二面体群 <math>D_6</math> 同构于[[三次对称群]] <math>S_3</math> 。 {{群}}
返回
二面体群
。
Advertising: