跳转到内容

Advertising:

相交 Sperner 系

来自GSXAB的知识库
Gsxab留言 | 贡献2024年3月2日 (六) 12:26的版本 (创建页面,内容为“分类:序理论 分类:极值集合论 {{InfoBox |name=相交Sperner系 |eng_name=intercescting Sperner family }} '''相交 Sperner 系'''('''intersecting Sperner family''')指集合的两两相交且互不包含的子集。 == 定理 == 对集合的子集族,若集族内每个集合大小都为 <math>k</math> ,且每两个集合都互不包含且相交,称为一个'''相交 Sperner 系'''。 对一个大小为 <math>n</math> 的集合,…”)
(差异) ←上一版本 | 最后版本 (差异) | 下一版本→ (差异)
相交Sperner系
术语名称 相交Sperner系
英语名称 intercescting Sperner family

相交 Sperner 系(intersecting Sperner family)指集合的两两相交且互不包含的子集。

定理

对集合的子集族,若集族内每个集合大小都为 [math]\displaystyle{ k }[/math] ,且每两个集合都互不包含且相交,称为一个相交 Sperner 系。 对一个大小为 [math]\displaystyle{ n }[/math] 的集合,其相交 Sperner 系中的元素数,最大不超过 [math]\displaystyle{ n \choose \lceil (n+1)/2 \rceil }[/math] 个。

Advertising: