加性函数(数论)

来自GSXAB的知识库
加性函数
术语名称 加性函数
英语名称 additive function

加性函数(additive function)指一个数论函数,满足 [math]\displaystyle{ \operatorname{gcd}(a, b) = 1 \rightarrow f(ab) = f(a) + f(b) }[/math]

如果加性函数被放在乘方运算指数位置,就会构造出一个对应的乘性函数


数论函数
分类 加性函数 完全加性函数
乘性函数 完全乘性函数
性质 Möbius 反演(Möbius 变换、 Möbius 逆变换)
Dirichlet 卷积
常见数论函数
除数函数 [math]\displaystyle{ \sigma_k(n) }[/math] 除数函数 [math]\displaystyle{ \sigma_0(n) }[/math]/[math]\displaystyle{ \tau(n) }[/math]/[math]\displaystyle{ d(n) }[/math] 除数和函数 [math]\displaystyle{ \sigma_1(n) }[/math]/[math]\displaystyle{ \sigma(n) }[/math]
Euler 函数 Euler 函数 [math]\displaystyle{ \varphi(n) }[/math] Carmichael 函数 [math]\displaystyle{ \lambda(n) }[/math]
二次剩余相关符号 Legendre 符号 [math]\displaystyle{ (\tfrac{n}{p}) }[/math] Jacobi 符号 [math]\displaystyle{ (\tfrac{n}{d}) }[/math]
乘法阶数与指标 乘法阶数 [math]\displaystyle{ \operatorname{ord}_{m} n }[/math]/[math]\displaystyle{ \delta_{m}(n) }[/math] 指标 [math]\displaystyle{ \operatorname{ind}_{g} n }[/math]/[math]\displaystyle{ \gamma_{m,g}(n) }[/math]
其他 相异质因子个数函数 [math]\displaystyle{ \omega(n) }[/math] 质因子个数函数 [math]\displaystyle{ \Omega(n) }[/math]Liouville 函数 [math]\displaystyle{ \lambda(n) }[/math]
质数计数函数 [math]\displaystyle{ \pi(n) }[/math] Чебышёв 第一函数 [math]\displaystyle{ \theta(n) }[/math]第二函数 [math]\displaystyle{ \psi(n) }[/math]Mangoldt 函数 [math]\displaystyle{ \Lambda(n) }[/math]
Möbius 函数 [math]\displaystyle{ \mu(n) }[/math]
Dirichlet 特征 [math]\displaystyle{ \chi(n;m) }[/math]