反对称关系
反对称关系 | |
---|---|
术语名称 | 反对称关系 |
英语名称 | antisymmetric relation |
反对称关系(antisymmetric relation)指集合上的一个二元关系中,所有有关系且不同的元素对交换顺序后无关系。
定义
对集合 [math]\displaystyle{ X }[/math] 上的二元关系 [math]\displaystyle{ R }[/math] ,若 [math]\displaystyle{ \forall a \forall b (a R b \land b R a \rightarrow a = b) }[/math],称关系 [math]\displaystyle{ R }[/math] 是反对称的(antisymmetric),关系 [math]\displaystyle{ R }[/math] 有反对称性(antisymmetry),及关系 [math]\displaystyle{ R }[/math] 是反对称关系(antisymmetric relation)。
以上定义等价于 [math]\displaystyle{ R \cap R^\mathrm{T} \subseteq I_X }[/math] 。
性质
反对称关系的关系矩阵,对角线外所有以对角线为轴对称的位置,不存在同时是 1 的情况。